skip to main content


Search for: All records

Creators/Authors contains: "Han, Xingguo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community‐weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community‐weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community‐weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community‐weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community‐weighted trait means as well as their functional diversity across grassland ecosystems.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.

    We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.

    At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.

    These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Seeds provide the basis of genetic diversity in perennial grassland communities and their traits may influence ecosystem resistance to extreme drought. However, we know little about how drought effects the community functional composition of seed traits and the corresponding implications for ecosystem resistance to drought.

    We experimentally removed 66% of growing season precipitation for 4 years across five arid and semi‐arid grasslands in northern China and assessed how this multi‐year drought impacted community‐weighted means (CWMs) of seed traits, seed trait functional diversity and above‐ground net primary productivity (ANPP).

    Experimental drought had limited effects on CWM traits and the few effects that did occur varied by site and year. For three separate sites, and in different years, drought reduced seed length and phosphorus content but increased both seed and seed‐coat thickness. Additionally, drought led to increased seed functional evenness, divergence, dispersion and richness, but only in some sites, and mostly in later years following cumulative effects of water limitation. However, we observed a strong negative relationship between drought‐induced reductions in ANPP and CWMs of seed‐coat thickness, indicating that a high abundance of dominant species with thick seeds may increase ecosystem resistance to drought. Seed trait functional diversity was not significantly predictive of ANPP, providing little evidence for a diversity effect.

    Our results suggest that monitoring community composition with a focus on seed traits may provide a valuable indicator of ecosystem resistance to future droughts despite inconsistent responses of seed trait composition overall. This highlights the importance of developing a comprehensive seed and reproductive traits database for arid and semi‐arid grassland biomes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    Even though lake sediments are globally important organic carbon (OC) sinks, the controls on long-term OC storage in these sediments are unclear. Using a multiproxy approach, we investigate changes in diatom, green algae, and vascular plant biomolecules in sedimentary records from the past centuries across five temperate lakes with different trophic histories. Despite past increases in the input and burial of OC in sediments of eutrophic lakes, biomolecule quantities in sediments of all lakes are primarily controlled by postburial microbial degradation over the time scales studied. We, moreover, observe major differences in biomolecule degradation patterns across diatoms, green algae, and vascular plants. Degradation rates of labile diatom DNA exceed those of chemically more resistant diatom lipids, suggesting that chemical reactivity mainly controls diatom biomolecule degradation rates in the lakes studied. By contrast, degradation rates of green algal and vascular plant DNA are significantly lower than those of diatom DNA, and in a similar range as corresponding, much less reactive lipid biomarkers and structural macromolecules, including lignin. We propose that physical shielding by degradation-resistant cell wall components, such as algaenan in green algae and lignin in vascular plants, contributes to the long-term preservation of labile biomolecules in both groups and significantly influences the long-term burial of OC in lake sediments.

     
    more » « less
  5. Abstract

    Intertidal sands are global hotspots of terrestrial and marine carbon cycling with strong hydrodynamic forcing by waves and tides and high macrofaunal activity. Yet, the relative importance of hydrodynamics and macrofauna in controlling these ecosystems remains unclear. Here, we compare geochemical gradients and bacterial, archaeal, and eukaryotic gene sequences in intertidal sands dominated by subsurface deposit-feeding worms (Abarenicola pacifica) to adjacent worm-free areas. We show that hydrodynamic forcing controls organismal assemblages in surface sediments, while in deeper layers selective feeding by worms on fine, algae-rich particles strongly decreases the abundance and richness of all three domains. In these deeper layers, bacterial and eukaryotic network connectivity decreases, while percentages of clades involved in degradation of refractory organic matter, oxidative nitrogen, and sulfur cycling increase. Our findings reveal macrofaunal activity as the key driver of biological community structure and functioning, that in turn influence carbon cycling in intertidal sands below the mainly physically controlled surface layer.

     
    more » « less
  6. Hector, Andrew (Ed.)
  7. Abstract

    Asexual reproduction plays a fundamental role in the structure, dynamics and persistence of perennial grasslands. Thus, assessing how asexual reproductive traits of plant communities respond to drought may be key for understanding grassland resistance to drought and recovery following drought.

    Here, we quantified three asexual reproductive traits (i.e. above‐ground tiller abundance, below‐ground bud abundance and the ratio of tillers to buds) during a 4‐year severe drought and a 2‐year drought recovery period in four grasslands that spanned an aridity gradient in northern China. We also assessed the relationship between these traits and the resistance and recovery of above‐ground net primary productivity (ANPP).

    We found that drought had limited and largely inconsistent effects on asexual reproduction among drought and recovery years and grasslands overall. Drought increased tiller abundance in the first treatment year and reduced bud banks by the fourth treatment year across grasslands. However, neither of the three asexual reproductive traits were correlated with drought resistance of ANPP. Drought legacies differed among the four grasslands with positive, negative and no legacies evident for the three asexual reproductive traits, and no clear relationship with aridity. Bud banks and tiller to bud ratio decreased and increased, respectively, in the first recovery year, but not in the second recovery year. In contrast to drought resistance, community bud abundance was strongly related to recovery, such that communities with higher bud abundance had greater ANPP recovery following drought.

    Synthesis. These results suggest that asexual reproductive traits may be important drivers of ecosystem recovery after drought, but that variable responses of these asexual reproduction traits during drought complicates predictions of overall grassland responses.

     
    more » « less
  8. Abstract

    Grasslands are subject to climate change, such as severe drought, and an important aspect of their functioning is temporal stability in response to extreme climate events. Previous research has explored the impacts of extreme drought and post‐drought periods on grassland stability, yet the mechanistic pathways behind these changes have rarely been studied.

    Here, we implemented an experiment with 4 years of drought and 3 years of recovery to assess the effects of drought and post‐drought on the temporal stability of above‐ground net primary productivity (ANPP) and its underlying mechanisms. To do so, we measured community‐weighted mean (CWM) of six plant growth and nine seed traits, functional diversity, population stability and species asynchrony across two cold, semiarid grasslands in northern China. We also performed piecewise structural equation models (SEMs) to assess the relationships between ANPP stability and its underlying mechanisms and how drought and post‐drought periods alter the relative contribution of these mechanisms to ANPP stability.

    We found that temporal stability of ANPP was not reduced during drought due to grasses maintaining productivity, which compensated for increased variation of forb productivity. Moreover, ANPP recovered rapidly after drought, and both grasses and forbs contributed to community stability during the post‐drought period. Overall, ANPP stability decreased during the combined drought and post‐drought periods because of rapid changes in ANPP from drought to post‐drought. SEMs revealed that the temporal stability of ANPP during drought and post‐drought periods was modulated by functional diversity and community‐weighted mean traits directly and indirectly by altering species asynchrony and population stability. Specifically, the temporal stability of ANPP was positively correlated with functional divergence of plant communities. CWMs of seed traits (e.g. seed width and thickness), rather than plant growth traits (e.g. specific leaf area and leaf nutrient content), stabilized grassland ANPP. Productivity of plant communities with large and thick seeds was less sensitive to precipitation changes over time.

    These results emphasize the importance of considering both the functional trait distribution among species and seed traits of dominant species since their combined effects can stabilize ecosystem functions under global climate change scenarios.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less